
Interface fluctuations on a hierarchical lattice

Ferenc Iglo´i
Research Institute for Solid State Physics, H-1525 Budapest, P.O. Box 49, Hungary

and Laboratoire de Physique du Solide, Universite´ Henri Poincaré(Nancy I), Boıˆte Postale 239,
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We consider interface fluctuations on a two-dimensional layered lattice where the couplings follow a hier-
archical sequence. This problem is equivalent to the diffusion process of a quantum particle in the presence of
a one-dimensional hierarchical potential. According to a modified Harris criterion, this type of perturbation is
relevant and one expects anomalous fluctuating behavior. By transfer-matrix techniques and by an exact
renormalization-group transformation we have obtained analytical results for the interface fluctuation expo-
nents, which are discontinuous at the homogeneous lattice limit.@S1063-651X~96!01808-9#

PACS number~s!: 05.40.1j, 64.60.Ak, 68.35.Rh

I. INTRODUCTION

Recently, there has been a growing interest in natural and
artificial systems that are organized in a hierarchical way.
Examples can be found in economical organizations@1# and
stock-market exchanges@2#, in geological processes before
major earthquakes@3#, and in studies of relaxation phenom-
ena of proteins@4#, spin glasses@5#, and computer architec-
tures@6#. Theoretically, much effort has been devoted to the
understanding of the linear dynamics~i.e., the diffusion pro-
cess! in a system with hierarchically organized energy barri-
ers. According to numerical@7,8# and exact@9,10# results,
the diffusion in such systems can be anomalous~which is
often called ‘‘ultradiffusion’’ @7#!. Furthermore, in several
models there is a dynamical phase transition@8# separating
regions with normal and anomalous diffusion. For a compre-
hensive review on the subject see Ref.@11#.

Another subject of theoretical interest is the properties of
~static! phase transitions on hierarchical lattices. For these
and other nonperiodic~quasiperiodic or more generally ape-
riodic! systems a relevance-irrelevance criterion has recently
been proposed@12#, in analogy to the Harris criterion@13#
for random magnets. The crossover exponent corresponding
to a nonperiodic perturbation is given by

F511nD~V21! ~1!

in terms of then correlation length exponent of the unper-
turbed system and the wandering exponent of the sequence
V @14#. HereD denotes the number of coordinates on which
the couplings depend, e.g., for a layered systemD51. The
perturbation is then expected to be relevant~irrelevant! if
F.0 ~F,0!, which was indeed found in a series of exact
studies on two-dimensional layered Ising models@15,16#.
For marginal sequences, whereF50, continuously varying
critical exponents and anisotropic scaling behavior were ob-
served@17#.

As far as the critical behavior on hierarchical lattices is
concerned, mainly the two-dimensional layered Ising model

with a one-dimensional Huberman-Kerszberg~HK! sequence
@7# and the corresponding Ising quantum chain were studied.
In numerical@18# and exact@19,20# calculations, nonuniver-
sal critical behavior was found in accordance with the van-
ishing crossover exponent in Eq.~1!, which follows from the
fact that the fluctuation exponent of the HK sequence is
V50 @20#.

In this paper we consider the interface fluctuation problem
on a layered lattice, where the couplings between the layers
follow the HK hierarchical sequence. As far as interface
wandering on nonperiodic lattices is concerned we should
mention the work by Henley and Lipowsky@21#, who con-
sidered the interface roughening in two-dimensional quasi-
crystals. On a layered lattice with Fibonacci-type quasiperi-
odicity, nonuniversal interface fluctuations were observed,
with a continuously varying interface wandering exponent.
This behavior is again in accord with the relevance-
irrelevance criterion, since withV521 and n5n'51

2 the
crossover exponent in Eq.~1! isF50. In our problem, on the
HK lattice V50, thusF51

2.0 and the perturbation is rel-
evant. Therefore one expects anomalous interface fluctua-
tions on this lattice.

The structure of the paper is as follows. We define the
model in Sec. II. The results of the transfer-matrix calcula-
tions and that of an exact renormalization-group~RG! trans-
formation are presented in Secs. III and IV, respectively. The
results are discussed in Sec. V.

II. FORMALISM

We consider a diagonally layered ferromagnetic spin
model~cf. the Ising model! on the square lattice with hierar-
chically organized interactions. The couplings in thehth di-
agonalKh5Jh/kBT are selected from a set~k0,k1,k2,...! and
kn5nk0 , such that

Kh5kn , h52n~2m11!. ~2!

This type of structure of the couplings~Fig. 1!, which shows
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the typical features of ultrametric topology@5#, was intro-
duced by Huberman and Kerszberg@7# following the work in
Ref. @1#.

The boundary spins on the~1,1! surfaces are fixed in dif-
ferent orientations~Fig. 1! and we are interested in the fluc-
tuations of the interface separating the positive and negative
regions. The interface is considered as a continuous struc-
tureless string and complicated interface configurations, such
as overhangs and bubbles, are omitted. It is generally ac-
cepted that to study interfacial fluctuations it is sufficient to
keep only solid-on-solid~SOS! -type interface configura-
tions. In this so-called SOS model the interface is geometri-
cally represented by a directed walk or polymer@22#.

In the SOS model the interface is characterized by its
heighth(x) at sitex and the interfacial energy is specified by
the Hamiltonian

2H/kBT5(
x
2Kh~x!, ~3!

where surface effects are omitted. The thermodynamic prop-
erties of the interface are conveniently studied in the
transfer-matrix formalism@23,24#. For our model the transfer
matrix in thex direction, parallel to the boundaries, is given
by

Th,l5dh,l21e
22Kh1dh,l11e

22Kl. ~4!

Here, according to Eq.~2!, the matrix elements are from a set
~e0,e1,e2, . . . ! and the ratio of successive terms is constant:
en11/en5R,1. For the homogeneous systemR51,
whereas for hierarchical latticesR measures the strength of

inhomogeneity. The interface is not likely to visit sites with a
matrix elementen , n@1, since the corresponding probability
is weighted by a factor ofRn.

The interfacial free energys and the longitudinal corre-
lation lengthji , which is measured parallel to the bound-
aries, are given in terms of the leading and the next to lead-
ing eigenvalues of the transfer matrixl0 andl1 as

s52 log l0 ~5!

and

j i
215 log~l0 /l1!. ~6!

The fluctuations of the interface grow on a power-law scale

^@h~0!2h~x!#2&;x2w, ~7!

wherew is the wandering or fluctuation exponent, which is
w5 1

2 for homogeneous two-dimensional systems@22#.
Another quantity of interest is the probabilityP0(x) that

the interface afterx steps has the same position, i.e.,h(0)
5h(x). For a walk or diffusion problem, wherex plays the
role of the time,P0(x) is the autocorrelation function, which
has the asymptotic behaviorP0(x);x2g. For homogeneous
two-dimensional latticesg51

2 and generallyw5g @8#. It
could be shown by slightly modifying the derivation in Ref.
@8# that the autocorrelation function averaged over the start-
ing positions of the interface can be expressed through the
spectrum of the transfer matrix as

P̄0~x!5
1

L (
i

S l i

l0
D x5E

2`

1

g~l!S l

l0
D xdl, ~8!

whereg(l)51/L( id(l2l i) is the density of states andL
denotes the width of the system in theh direction, thus being
the dimension of the transfer matrix.

The eigenvalues of the transfer matrix are dense at the top
of the spectrum and one can develop a scaling theory in
terms of these critical eigenvalues. We consider a critical
level li of a system with a finite widthL and denote by
Dl i5l02l i its difference from the top of the spectrum.
Changing lengths by a factor ofb52, i.e., withL85L/2, the
i th eigenvalue will bel i8 and the difference~Dli!8 will scale
with a factor ofbyl; thus

~Dl i !852ylDl i , ~9!

whereyl is the gap exponent. We stress that the statement in
Eq. ~9!, that all critical levels scale with the same factor, is a
scaling hypothesis, which will be verified by actual calcula-
tions in the following sections.

Using Eq.~9!, the transformation law for the density of
states is given by

g~Dl!52yl21g8@~Dl!8#, ~10!

which is compatible with a power-law dependence of the
density of states at the top of the spectrum:

g~Dl!;~Dl!1/yl21. ~11!

Now putting this expression into Eq.~8! and evaluating the
autocorrelation function, one getsg51/yl .

FIG. 1. Structureless interface on a diagonally layered square
lattice. The values of the couplings, which follow the hierarchical
HK sequence in Eq.~2!, are indicated below. Sites to be decimated
in the RG transformation are marked byX.
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From the scaling behavior of the spectrum in Eq.~9! one
obtains, for the finite-size corrections to the largest eigenval-
ues,

l02l i~L !;L2yl. ~12!

Thus, from Eqs.~6! and ~12!, the longitudinal correlation
length is ji;Lyl. In a finite system the correlation length
perpendicular to the~1,1! surface is limited by the width of
the stripj';L; therefore the interface wandering exponent
in Eq. ~7!, which can be alternately defined asj';j i

w, is
given by

w51/yl . ~13!

Thus, indeed,w5g, as expected from scaling considerations.
In the following we calculate the interface fluctuations on

the HK lattice by two methods. First, we study numerically
the spectrum of the transfer matrix, verify the validity of the
scaling hypothesis, and determine the interfacial tension and
the wandering exponent. Then we apply an exact
renormalization-group transformation and calculate analyti-
cal expressions for the critical exponents.

III. NUMERICAL STUDY OF THE TRANSFER MATRIX

The transfer matrix of the interface problem in Eq.~4! is
tridiagonal and could be diagonalized by powerful methods
@25#. In the specific problem, however, due to the hierarchi-
cal structure of the transfer matrix, one can implement a very
fast algorithm to calculate the roots of the corresponding
determinant.

We consider a finite system of sizeL52l and express the
corresponding determinantD(2l) by two subdeterminants of
sizes 2l21 and 2l2121, respectively, in the form

D~2l !5D~2l21!D~2l21!2D~2l2121!D~2l2121!e l21
2 .
~14a!

The symmetric determinantD̃(2l22) of size 2l22, which is
obtained fromD(2l) by leaving out the first and last rows
and columns, can be similarly expressed as

D̃~2l22!5D~2l2121!D~2l2121!

2D̃~2l2122!D̃~2l2122!e l21
2 . ~14b!

Finally,

D~2l21!5D~2l21!D~2l2121!

2D~2l2121!D̃~2l2122!e l21
2 . ~14c!

These relations supplemented withD~1!52l, D~2!5l22e0
2,

and D̃~2!5l22e1
2 define a fast procedure to calculate the

value of the determinant for very large sizes. For example,
we could treat with this method slightly perturbed systems
with R'1 up to sizesL5230–240.

The largest eigenvalues calculated by this method all have
the same type of finite-size dependence, thus the scaling hy-
pothesis in Sec. II is indeed satisfied. The leading eigenval-
ues calculated on the largest finite lattices are accurate at
least up to 10–12 digits. The gap exponents describing the
finite-size dependence ofl i(L) in Eq. ~12!, however, could

be obtained from the raw data with a comparatively smaller
accuracy, up to 5 digits. In this case, to increase accuracy we
used sequence extrapolation methods, such as the van den
Broeck-Schwartz and the Bulirsch-Stoer methods@26#.

The leading eigenvalue of the transfer matrix, which is
connected to the interfacial tension in Eq.~5!, and the ex-
trapolated values of the interface wandering exponent are
listed in Table I. One can see that both the leading eigen-
value and the wandering exponent are monotonically de-
creasing asR goes from one to zero. In the limitR→0 the
interfacial tension in Eq.~5!, together with the wandering
exponent, goes to zero, which is due to the fact that the
system tends to be separated into disconnected parts. More
interesting is the behavior of the wandering exponent around
the homogeneous lattice point. As the value ofR is lowered
below one the wandering exponent jumps by a finite amount
of Dw50.043 279 9 fromw5 1

2. In renormalization-group
~RG! language, such type of behavior corresponds to a rel-
evant perturbation, which brings the system into another
stable fixed point. In the next section we shall explicitly con-
struct the RG transformation and determine exactly the wan-
dering exponent.

IV. RENORMALIZATION-GROUP CALCULATION

We are going to study the scaling behavior of the largest
eigenvalues of the transfer matrix in Eq.~4!, which satisfy
the second-order difference equation

05Ti ,i11c i112lc i1Ti21,ic i21 , ~15!

where in the thermodynamic limit the boundary terms are
omitted. The structure of the couplings that are connected to
Ti ,i11 in Eq. ~4! are shown in Fig. 1. To construct an exact
recursion we decimate those sites that are connected to ak1
coupling or equivalently to ane1 matrix element~denoted by
crosses in Fig. 1!. We note that the same type of decimation
was used by Maritan and Stella in their study of the diffusion
problem on the HK lattice@10#. One can see that after a
decimation step the~e0,e1,e0! triplet will play the role of the
renormalizede08 , whereas the other couplings will renormal-
ize asen85en11, keeping the value ofR and the structure of
the transfer matrix unchanged.

Performing the RG transformation we first denote the two
neighboring sites to be decimated byi and i11 and express
ci andci11 as

TABLE I. Leading eigenvalue and the corresponding interface
fluctuation exponent from numerical diagonalization of the transfer
matrix for different values of the hierarchical parameter.

R l0/e0 w51/yl

1 2 0.5
0.999 1.998 008 94 0.456 719 9
0.9 1.828 532 74 0.455 109 2
0.75 1.622 186 48 0.445 143 8
0.5 1.352 860 81 0.400 454 0
0.25 1.149 486 52 0.311 057 7
0.1 1.053 814 56 0.227 297 1
0.001 1.000 500 38 0.091 186 7
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c i5Ac i211Bc i12 ,

c i115Bc i211Ac i12 , ~16!

whereA5e0l/~l
22e1

2! andB5e0e1/~l
22e1

2!. Then the differ-
ence equations in terms of the remaining, nondecimated
spins have the same form as Eq.~15!, provided that the ei-
genvalue and the couplings transforms as

l85
l2Ae0

B
, en85

en11

B
, n51,2,..., ~17!

ande085e0. Thus the ratio of the sequence remains invariant
R85R, as expected. As a consequence, in the RG transfor-
mation, besidesl, it is sufficient to consider only one cou-
pling, saye1, and the RG transformation can be written as a
two-parameter recursion

l85l
l22e1

22e0
2

e0e1
, e185R

l22e1
2

e0
, ~18!

wheree0 is the input value of the largest matrix element.
The physically relevant fixed point of the transformation

with l.0 is given by

S e1
e0

D *5
R

12R
, S l

e0
D *5

A12R1R2

12R
, ~19!

which is stable for 0,R,1. The eigenvalues of the linear-
ized fixed-point transformation are roots of a quadratic equa-
tion and are given as

L1,25
1

R
1R1

1

2
6F S 1R1R1

1

2D
2

22G1/2. ~20!

The leading eigenvalueL1.1 determines the scaling behav-
ior of the spectrum of the transfer matrix and theyl scaling
dimension is given by

yl5
log L1

log 2
. ~21!

The second eigenvalue of the RG transformation isL2,1
and the corresponding scaling field is irrelevant; thus the
fixed point in Eq.~21! is attractive and governs the critical
properties of the physical model withe15Re0. It is seen
from Eq. ~19! that the fixed point of anomalous interface
fluctuations does not exist at the homogeneous pointR51,
where the fluctuations are characterized by the normal wan-
dering exponentw51

2. Comparing the analytical results for
w51/yl with those obtained by finite-size calculations in
Table I, we can say that the numerical results are indeed very
accurate: they correspond to that in Eq.~21! at least up to six
digits.

V. DISCUSSION

In this paper we studied interface fluctuations on a layered
hierarchical lattice. The perturbation caused by inhomoge-
neous couplings is relevant according to a linear stability
analysis and the observed interface fluctuations are indeed
anomalous. The wandering exponentw is a monotonically

decreasing function ofR and discontinuous atR51. The fact
thatw(R), 1

2 can be understood, since the interface prefer-
entially stays onk0 lines and the probability to visit akn line
is rapidly decreasing withn. Consequently, the interface
fluctuations are damped by the inhomogeneously distributed
couplings.

One can estimatew(R) in the limit R→0, when the prob-
ability of a large interface fluctuation of heighth52n is pri-
marily given bypn;en , i.e., by the probability to have one
step on thekn line. For such a fluctuation the interface ap-
proximately takesx;p n

21;R2n steps, thus the wandering
exponent in leading order isw(R)52log 2/logR, which
corresponds to the asymptotic behavior of the analytical re-
sult in Eq.~22!. We note that in theR→0 limit the interface
fluctuations can be described by a Markovian process and
then our problem is equivalent to the diffusion of a particle
in a hierarchical lattice, as studied in Refs.@7–11#.

The HK sequence used in this paper can be generalized by
having a generaln character@27# instead of then52 used in
Eq. ~2!. Then one has, in Eq.~2!, h5Rn(nm1m), with
m51,2, . . . ,n21. According to our numerical and analytical
investigations forn53 and 4, the main characteristics of in-
terface fluctuations remain the same as forn52: the wander-
ing exponent has a jump atR51 and varies withR. Forn53
we obtained the analytical result

wn535
log 3

log Ln53
,

Ln5352S 1R1R11D1F4S 1R1R11D 223G1/2. ~22!

As mentioned before, the problem studied in this paper is
related to the diffusion process on hierarchical lattices@11#.
Our problem, however, can be formulated as the quantum-
mechanical diffusion process of a particle that is represented
by a wave packet and placed on a one-dimensional HK po-
tential. Thenx and h(x) correspond to the timet and the
position of the particle at a given time step, respectively,
while the transfer matrix describes time evaluation. Accord-
ing to our results, in a one-dimensional hierarchical potential
the width of the wave packet will grow in time anomalously
as tw(R).

Our final remark concerns some similarities of our results
to that of interface fluctuations in a repulsive, inhomoge-
neous surface potential, decaying as;l2v, wherel measures
the distance from the surface@28#. In two dimensions, for
v,2, the perturbation is relevant and the interface wander-
ing exponent takes the anomalous valuew51/v. 1

2 @29#. In
this problem, however, the perturbation is confined to the
surface; furthermore, the wandering exponent is continuous
at v52.
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